
1. Introduction
Terrestrial Gamma ray Flashes (TGFs) are short bursts of high energy (<40 MeV) photons, produced during 
thunderstorms. A review of TGFs theory and observations is presented by Dwyer et al. (2012). TGFs were 
first detected using the BATSE experiment on-board the CGRO spacecraft (Fishman et al., 1994). Later, 
TGFs were recorded by the satellites RHESSI (Smith et al., 2005), AGILE (Marisaldi et al., 2014), Fermi 
(Briggs et al., 2010; Roberts et al., 2018), BeppoSAX (Ursi et al., 2017), and the Atmosphere-Space Inter-
actions Monitor (ASIM) (Neubert, Østgaard, Reglero, Blanc, et al., 2019). ASIM was successfully launched 
and docked to the International Space Station in April 2018 and started science operations since June 2018. 
The first results from ASIM were presented by Østgaard, Neubert, et al. (2019); Sarria et al. (2019); Neubert, 
Østgaard, Reglero, Chanrion, et al. (2019).

When referring to “electrons beams” in the context of TGFs, one can think of two different objects. The first 
is associated with the production process of the TGF. This production process takes place, at least for TGF 
detectable from space, between ≈10 and ≈15 km altitude. This first type of “electron beam” consists of the 
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Relativistic Runaway Electron Avalanche (RREA) producing the TGF's high energy photons. This RREA is 
not detectable from space since it is impossible for it to go through the atmosphere layer. The second type 
of “electron beam” is called “terrestrial electron beam” (TEB) and is produced higher in the atmosphere 
by the TGF's photons, though the processes of Compton scattering and electron-positron pair production. 
Since electron-positron pair production is involved, TEBs are composed of a fraction of positrons, typically 
10%–30% (see Briggs et al. (2011), table 1). A TEB is bound (“beamed”) around the magnetic field line inter-
cepting the source TGF's geographical location (Cohen et al., 2010; Dwyer et al., 2008; Sarria et al., 2015). 
Most electrons and positrons forming TEBs are produced above 40 km altitude, where the air collision fre-
quency of the electrons (and positrons) is comparable to their gyration frequency around geomagnetic field 
lines. TEBs propagate in space and travel large distances in the magnetosphere. TEBs were first reported 
from measurements of the CGRO spacecraft (Dwyer et al., 2008). Later, they were detected by Fermi (Briggs 
et al., 2011; Stanbro et al., 2019), BeppoSAX (Ursi et al., 2017), AGILE (Lindanger et al., 2020), and ASIM 
(Sarria et al., 2019). RHESSI probably detected one or two TEB event(s), but it has not been 100% confirmed 
yet (Gjesteland, 2012; Smith et al., 2006). In general, TEBs are detected much less often than TGFs (e.g., 
Fermi has a few thousand TGFs and about 30 TEBs) because the detector must be located inside a narrow 
window of less than a few tens of kilometers along the right geomagnetic field line (intercepting the TGF 
source position), and they last for only a few milliseconds.

One of the reasons of studying TEBs is to retrieve information about the TGFs that produced them. Briggs 
et al. (2011) constrained the positron fraction to be between 10% and 34%, based on three events. Positrons 
fractions are linked to the spectral shape of the source TGF, as photons with harder spectrums will trigger 
more electron-positron pair production. In Sarria et al.  (2019), the beaming of the source TGF could be 
constrained between about 30° and 42° (half angle, isotropic within a cone). Another reason to study TEBs 
is that they may have an impact on the inner Van Allen radiation belt, that has not been quantified yet (to 
our knowledge). Even if it is an important question, it is not the subject of the present paper.

One of the most important question regarding TGFs is their production mechanism. Two main models 
are proposed to explain the production of TGFs, and in both, the TGF's photons are produced by high en-
ergy electrons through the bremsstrahlung process. These high energy electrons form a RREA (Gurevich 
et al., 1992; Wilson, 1924). In the first model, a large scale electric field within thunderclouds is considered. 
This requires the presence of initial high energy seed electrons, that may be provided by cosmic-ray second-
aries or background radiation. The background electric field is strong enough to produce RREA avalanches, 
but the RREA mechanism alone is not enough to produce bright enough TGFs (i.e., detectable from space, 
therefore, with more than 1016 photons between 50 keV and 40 MeV at source), and a x-ray and positron 
feedback mechanism is required (the “relativistic feedback”); only possible if large potentials are available 
(Babich et al., 2005; Dwyer, 2012; Dwyer et al., 2003; Skeltved et al., 2014). This mechanism will produce 
a discharge of the thundercloud that is of different nature than usual lightning discharges. The resulting 
high-energy photon spectrum given by this model is a so-called “fully developed” RREA. The development 
of a RREA process can be characterized by the number of avalanche lengths that were achieved (that de-
pends on the extend and magnitude of the available electric potential). The energy spectrum of the electrons 
converges to a standard shape (≈exp(−E/7.3 MeV)), which is fully obtained with six or more avalanche 
lengths, even if the total number of electrons keeps exponentially increasing with the number of avalanche 
lengths. Another variant of this model uses a lightning leader to push the background (large scale) field 
above the threshold to trigger the relativistic feedback mechanism (Skeltved et al., 2017).

The second model of TGF production requires a propagating lightning leader. It is sometimes referred as the 
“leader-streamer” model. It considers that initial seed electrons are produced by the cold runaway mech-
anism (Gurevich, 1961), happening in the streamer phase or in the leader phase (Celestin & Pasko, 2011; 
Chanrion et al., 2014; Dwyer, 2008; Köhn & Ebert, 2015; Moss et al., 2006). These energetic seed electrons 
follow a specific distribution and a fraction of them are then accelerated and multiplied by a larger scale 
electric field, producing a RREA. The larger scale electric field can be the field induced by the leader and/
or a large scale (background) field in the thunderstorm. In principle, leader-based TGF production mod-
els do not exclude the possibility of relativistic feedback, that could be more or less important (Skeltved 
et al., 2017). A parameter that impacts the energy spectrum of emitted photons the most is the potential 
drop in the leader tip region that is available for the acceleration of energetic electrons. Resulting TGF 
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energy spectra for several leader potential drops are presented in Celestin 
et al. (2015), figure 3. They actually correspond to a more or less devel-
oped RREA process. Celestin et al. (2012) also showed that energy spec-
tra harder than the characteristic fully developed RREA spectrum could 
be achieved by involving non-equilibrium acceleration of electrons. One 
significant advantage of leader-based TGF models is that they propose an 
unified approach to explain TGF's X/gamma ray production, as well as 
x-ray (i.e., softer) emissions from lightning propagating leaders that were 
observed from ground, balloons, and aircraft (Dwyer et al., 2003, 2004, 2
005, 2011). Mailyan et al. (2019) presented the first study that confronted 
leader models to TGFs recorded by the Fermi space telescope, with tested 
potential drops ≤200 MV. They found that lightning leader models with 
potentials of 200 MV and tilted beams gave the best fit to the data in most 
of the analyzed TGF events. However, the range of compatible models is 
found to be quite wide.

In this article, we report the second TEB event detected by ASIM on 
March 24, 2019. Compared to the previous event (presented in Sar-
ria et al.  (2019)), data from the two detectors are available: the pixelat-
ed Low-Energy detector (50–400  keV) and the High Energy Detector 
(300 keV–30 MeV), that permits an unprecedented spectral analysis of 
a TEB event. In Section 2, we present the instruments that were used. In 
Section 3, we present the event. In Section 4, we present the methods and 
models we use for the spectral analysis. In Section 5, we show the results 
of the analysis. We conclude in section 6.

2. Instruments
The ASIM payload (Neubert, Østgaard, Reglero, Blanc, et al., 2019) con-
sists of two main instruments, the Modular X- and Gamma ray Sensor 

(MXGS) (Østgaard, Balling, et al., 2019) and the Modular Multi-spectral Imaging Array (MMIA) (Chanrion 
et al., 2019). ASIM is mounted on the International Space Station (ISS) orbiting the Earth at about 400 kms 
altitude with an inclination of 51.6°. MXGS consists of two detectors for detecting X- and gamma-rays. The 
MXGS Low-Energy Detector (LED) is layer of 16,384 pixels of Cadmium-Zink-Telluride (CZT) detector 
crystals, sensitive to photons with energies from 50 keV to about 400 keV. The MXGS High Energy Detec-
tor (HED) comprises 12 Bismuth-Germanium-Oxide (BGO) detector modules coupled to photomultiplier 
tubes (PMT), sensitive in the energy range of 300 keV to about 40 MeV.

GLD360 (VAISALA) is a network of ground-based lightning sensors (1–350 kHz) detecting both Cloud-to-
Ground and Intra-Cloud lightning. The GLD360 sensors use a combination of magnetic direction finding 
and time-of-arrival calculations (from 4 stations or more) to geolocate the lightning source (see acknowl-
edgments for more details). The typical uncertainty on location is about 2.5 km but it can vary a lot with 
geographical location (Rudlosky et al., 2017).

We also present data provided by the Meteosat-11 geostationary satellite, that provides regular scans of 
cloud coverage at several wavelengths (used data comes from band 4, at 3.9 μm, with a 3 km spatial resolu-
tion). See acknowledgments for more information.

3. Observation
Figure 1 shows a map of the event together with Satellite imagery that was provided by the geostationary 
satellite Meteosat-11. The ASIM trigger UTC time is March 24,2019, 00:31:53.135444 and the ISS was located 
at latitude of ϕ = 0.157°, longitude of λ = 55.301°, and altitude of h = 408.6 km, that is above the Indian 
ocean, close to Madagascar. The ASIM clock has a −20 to 30 m s absolute timing uncertainty with respect to 
GPS UTC time. A VAISALA (GLD360) discharge event with a UTC time of March 24,2019, 00:31:53.134000 
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Figure 1. Image from geostationary satellite Meteosat-11 around 00:30 
UTC, about 1 min and 53 s before the ASIM trigger. The image comes 
from the optical band 4 (3.9 μm, 3 km resolution). The tropical cyclone 
Joaninha can be seen in the south-east part of the picture and extends over 
a thousand of kilometers. The positions of the ISS, the GLD360 match (V), 
and the magnetic field line footpoint (M) are indicated. The track of the 
Earth's magnetic field line (dark blue dashed line) and of the trajectory 
of the ISS (green dashed line) are also showed. Point V is very close to M 
in both location (Δr = 4.82 km) and time (Δt = 1.44 m s), and is located 
in the north-western rainbands of the cyclone. ISS, International Space 
Station.
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(Δt = 1.44 m s) was found very close to the southern magnetic line footpoint (at 45 km altitude) intercept-
ing the position of the ISS: [ϕGLD360 = −7.05°, λGLD360 = 55.91°] and [ϕmag,s = −7.00°, λmag,s = 55.92°] that 
gives Δr = 4.82 km. Note that the GLD360 location uncertainty can be up to 20 km for this event, and the 
uncertainty in the ISS's position is of the same order. The northern magnetic field line footpoint is located at 
[ϕmag,n = 20.52°, λmag,n = 55.10°], but no lightning activity was observed close to it. No lightning activity was 
detected by GLD360 below the ISS, within 540 km and ±1 s around the trigger time. The MMIA photome-
ters did not detect any lightning activity below the ISS as well.

From satellite imagery (Figure 1), it appears that the southern magnetic field line footpoint is located in the 
rainbands of a tropical cyclone, named “Joaninha.” It is the first time that the detection of a TEB associated 
to a TGF produced in a cyclone is reported.

Figure  2a shows the recorded lightcurves for LED and HED, as well as a modeling result. The latter is 
obtained using what will be referred as the “consensus model,” that assumes a source TGF located at the 
southern magnetic footpoint, at 12 km altitude, with an angular distribution following a Gaussian distribu-
tion with σθ = 20° (centered on zenith), and with an energy spectrum ∝ E−1 exp(−E/7.3 MeV) (maximum 
energy set to 40 MeV). More information about the modeling is presented in the next section. The consensus 
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Figure 2. ASIM TEB event 190324. (a) Recorded lightcurve by HED and LED, with 1−σ Poisson error bars. Simulation 
results from the consensus model are shown and give a good fit to the data ( 2(LED) 1.33r t ,  2(HED) 1.34r t ). (b) 
Recorded energy spectrum by HED and LED, with 1−σ Poisson error bars. Simulation results from the consensus 
model are shown and give a good fit to the data ( 2(LED) 0.88r e ,  2(HED) 0.85r e ). ASIM, Atmosphere-Space 
Interactions Monitor; HED, High Energy Detector; LED, Low Energy Detector; TEB, Terrestrial Electron Beam.
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model gives a very good fit to the data (see figure label). Figure 2b shows the spectra recorded by the MXGS 
instrument for LED and HED. There are a total of 168 recorded counts in HED and 307 counts in LED. 
The error bars are 1−σ (≈68% interval) assuming Poisson statistics on the count per bin values given by 
the model. The spectrum shows a line at 511 keV, that is expected because the electron beams contains a 
significant fraction of positrons. The consensus model gives a very good fit to the spectral data as well (see 
figure label), and indicates a positron to electron ratio of 16.1%. This value is comparable to previous results 
(Briggs et al., 2011).

4. Method to Constrain the Source TGF Spectrum
As presented in the introduction, for any considered TGF production scenario, the spectral shape for the TGF 
is governed by the RREA process that produces high-energy photons through the bremsstrahlung process. 
A RREA can be more or less developed depending on how many avalanches lengths have been achieved, 
that depends on the available potential (in the leader and/or background electric field) and the extend of the 
electric field(s). The resulting TGF photon energy spectrum can be approximated with Equation 1: 

   1( ) exp / ,with mf E E E E E (1)

where E is the energy, ϵ is a cut-off energy and Em is the maximum allowed energy. TGF energy spectra from 
fully developed RREA are excepted to have ϵ ≥ 5 MeV (Dwyer, 2012; Sarria et al., 2018; Skeltved et al., 2014). 
Typical fully developed TGF spectra used in the literature have ϵ = 6.5–7.3 MeV, and Em of 30–40 MeV. TGF 
production models based on a propagating lightning leader can, in theory, produce bright TGFs (i.e., de-
tectable from space, therefore, with more than 1016 photons at source) but that shows a partially developed 
RREA spectrum. This is because, for these models, typically 1012 (or more) energetic electrons are initially 
provided by the cold runaway mechanism. Leader models with potential drops as low as ≈160 MV could 
potentially produce bright TGFs (see Celestin et al. (2015), Table 1). By “potential drop,” it is meant the po-
tential difference between the tip of the lightning leader and the ambient potential.

Equation 1 can fit a fully developed RREA (using ϵ ≥ 5 MeV, Em = 40 MeV), as well as partially developed 
RREA energy spectra resulting from leader models. The leader 300 MV model from Celestin et al. (2015) 
(figure 3) can be fit by Equation 1 with ϵ = 4.7 MeV and Em = 30 MeV. The 160 MV leader model can be fit 
by Equation 1 using ϵ = 4.3 MeV and Em = 20 MeV. In the cases of potential drops of 160 and 300 MV, the 
initial electron's positions are set at 2 and 3.5 m from the leader tip, respectively, because of the shielding 
of the electric field (Skeltved et al., 2017). The corresponding effective electric potential drops (i.e., that the 
energetic electrons can use) are, respectively, 28 and 53 MV (Celestin et al., 2015).

In addition to the 160 and 300 MV leader spectra, we chose to test spectra with ϵ equal to 6.5, 7.3, 8, and 
10 MeV (all using Em = 40 MeV). The first two values correspond to values used in the literature (Bowers 
et al., 2017; Dwyer et al., 2012; Sarria et al., 2018; Xu et al., 2019). After looking at the preliminary results 
using these two values, we decided to add ϵ = 8 MeV and ϵ = 10 MeV. These last two values were primarily 
added on an ad hoc basis, but a physical justification is that, in theory, non-uniform electric fields in leader 
models can also produce TGF spectra harder than typical fully developed RREA if non-uniform electric 
fields are involved (Celestin et al., 2012). We decided not to test values above ϵ = 10 MeV and Em = 40 MeV, 
since such high energies seem irrelevant for TGFs, given our currrent undertsanding.

To generate a simulated ASIM spectrum, we proceeded to forward modeling of the recorded spectrum, 
using a two stage simulation. In the first stage, a TGF is started at 12 km altitude, assuming one of the 
initial energy spectra models, and is propagated to the ISS altitude (about 400 km) using the Geant4-based 
Monte-Carlo model presented in Sarria et al. (2019) and publicly available (see acknowledgments). Energy, 
3D-momentum, and times of electrons/positrons reaching the ISS within a radius of 80 km (at ISS altitude) 
are saved. At the end of this stage, at least 1 million particle records are required for each tested source TGF 
spectrum model.

In the second stage, the recorded electrons/positrons are used as input of the ASIM mass model to simu-
late the response of the instrument. A rotation of frame of reference (Earth to ISS) is applied, and we also 
included the local geomagnetic field. The used mass model includes the ASIM detectors (MXGS, MMIA), 
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the instrument platform, as well as non-negligible surrounding elements (e.g., the Columbus module). The 
energy deposition on the detectors can be direct, that is, electrons/positrons hitting directly a CZT or BGO 
crystal, or indirect. In the indirect case, electrons/positrons emit bremsstrahlung photons by interaction 
with the surrounding material that hit at least one crystal. Photons can also come from annihilating pos-
itrons, with specific energy of 511 keV. For HED, because of the shielding, about 98% of the energy depo-
sition is due to indirect hits into the BGO crystals. For LED, direct hits are more important: about 72% of 
the energy deposition. This explains why the effective area of LED is larger than HED when considering 
incident electrons/positrons. The effective area is calculated as the geometrical area (≈900 cm2 for HED and 
≈1,024 cm2 for LED) multiplied by the probability of an incident TEB electron to deposit more than 300 keV 
into at least one BGO crystal (for HED), or more than 50 keV into at least one CZT pixel (for LED).

At the end of the second stage, a simulation data set in the form of a list of detected time and energy counts 
is generated. To be able to completely neglect the simulation noise, it is required to have at least 1,000,000 
counts on each detector to build each energy spectrum and calculate the effective areas. The final modeled 
spectra also include a background component build from real background data.

A key feature of performing spectral analysis on the TEB, instead of TGF, is that the energy spectrum of 
the constituting electrons and positrons above 100 km altitude is only weakly dependent on the following 
parameters:

•  the radial distance between the TEB center and the ISS. The concept of radial is presented more precisely 
in the supporting information, Figure A.1

•  the beaming and the tilt angles of the source TGF
•  the source altitude of the TGF, if set between 10 and 15 km

Actually, we found that the spectrum of the source TGF is the dominanting factor that affects the spectrum 
of the detected TEB. This permit a substantial simplification of the problem as it reduces drastically the 
number of free parameters to include in the analysis. Since these three points are crucial for this analysis, 
we provide in the supporting information document more detailed arguments and simulation results sup-
porting those three points. It includes the results of the procedure described below if applied to source TGF 
altitudes of 10 and 15 km, and various opening angle distributions and tilt angles. The effect of the source 
TGF altitude is small and does not affect significantly the results presented next (this issue discussed into 
details in the supporting information, section B). In the following, we fix the source TGF model to a source 
altitude to 12 km, a Gaussian angular distribution with σ = 20°, and no tilt angle.

The simulated spectra are evaluated with respect to the observation, separately for the LED (50–370 keV) 
and the HED (0.3–40 MeV), and with both detectors together. To compare the modeling results to the ob-
servation, we use three methods: a likelihood analysis, a χ2 analysis (Eadie et al., 1971; Lyons, 1986; Mar-
tin, 1971), and the effective LED/HED area ratio. Note that these three criteria are not independent as they 
use the same data sets: the list of measured and simulated energy counts by the HED and the LED.

For the likelihood analysis, a value of 2 ( )ln  , the Negative Log-Likelihood, is calculated. The model with 
the lowest value of 2 ( )ln   is considered to be the best description of the observation. Models are considered 
to be also possible if their 2 ( )ln   values have a difference of less than a threshold value τ. We calculated 
that τ ≈ 5 for a confidence level of about 99%, similar to the one used by Mailyan et al. (2016) for Fermi-GBM 
observations. This value assumes that 2 ( )ln   evolves following approximately a normal distribution with 
respect to the free parameter(s). In the following, we present the values Δmle, that are the values of 2 ( )ln   
subtracted by the value of 2 ( )ln   for the best model. Therefore, the best model has Δmle = 0 and compatible 
models have Δmle ≤ τ. A verification if a given model was found worse than another just because of random 
fluctuations (“by chance”) is also performed.

We also provide a reduced χ2 value, noted  2
r . If  2

r  is below a critical value, the model is considered com-
patible with the measurement, and above the model is considered incompatible. The Pearson's χ2 method is 
affected by choice of binning (i.e., energy intervals chosen to build the spectra). To mitigate this effect, we 
chose a binning with at least 7 measurement counts on each bin for HED, and at least 10 for LED. These 
two binnings are used to make the spectra presented in Figure 2b. Given the used binning, the critical value 
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,r c is 1.94 (8 degrees of freedom) for the LED, 1.75 for the HED (12 degrees of freedom), and 1.57 for the 

combination of both (20 degrees of freedom).

Compared to the Pearson's χ2, the maximum likelihood analysis presents the advantage of not relying on 
a bining of the measurement data: it keeps all its granularity, that is, no information is lost by binning the 
measurements. The maximum likelihood analysis is better suited than the χ2 to estimate which model is the 
best description of the observation (see, e.g., Hauschild & Jentschel, 2001)

5. Results and Discussion
Table 1 summarizes the results of this study. The models are sorted according the prevalence of high ener-
gies (also called “hardness”) or, equivalently, by decreasing LED/HED effective area ratio. As indicated in 
the previous section, three main evaluation criteria are presented: the reduced Pearson's  2

r , the maximum 
likelihood, and the LED/HED effective area ratio.

Concerning the LED spectral fits (Table 1), all the models give good fits, using the  2
r  or the Maximum 

likelihood analysis. We interpret this as the energy range of 50–370 keV being too narrow to discriminate 
between the models.

Concerning the HED spectral fits, looking at the  2
r  values, only the 160 MV leader model is found incom-

patible. This criterion gives similar conclusions when LED and HED spectra are combined.

The maximum likelihood analysis on the HED spectrum shows that the best model is for ϵ = 8 MeV. The 
fit for ϵ = 7.3 MeV is also very close. It indicates that the leader 300 MV model and harder spectra are also 
possible explanations. If LED and HED spectra are combined, the best model is then ϵ  =  10  MeV (but 
ϵ = 8 MeV is a very close fit), and only models with ϵ = 6.5 MeV or greater are compatible.
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Model

Effective area in cm2

LED/HED effective area ratio

Maximum likelihood analysis result value Δmle Pearson's  2
r e+/e− 

ratioLED HED LED HED Co. LED HED Co.

“Leader 160 MV” 122.0 43.7 2.79 0 19.0 22.5 0.84 1.97 1.66 10.3%

ɛ = 4.3 MeV

Em = 19.2 MeV

“Leader 300 MV” 141.5 61.0 2.32 0 3.4 7.1 0.88 1.04 1.31 13.3%

ɛ = 4.7 MeV

Em = 32 MeV

ɛ = 6.5 MeV 156.0 74.4 2.10 0.2 0.8 3.1 0.89 0.87 1.27 15.2%

Em = 40 MeV

ɛ = 7.3 MeV 162.2 80.4 2.02 0.3 0.2 1.9 0.88 0.85 1.28 16.1%

Em = 40 MeV

ɛ = 8 MeV 168.4 85.5 1.97 0.5 0 1.1 0.89 0.84 1.29 16.8%

Em = 40 MeV

ɛ = 10 MeV 177.8 94.7 1.88 0.5 1.0 0 0.90 0.83 1.30 18.3%

Em = 40 MeV

Compatibility n.a. 1.82 ± 0.35 ≤5 ≤1.94 ≤1.75 ≤1.57

range

Three main criteria are presented: the led/hed effective area ratio, the maximum likelihood and the Pearson's  2
r . “Co.” stands for the led and hed combination. 

the compatibility range for the different criteria are also indicated. bold values indicate compatible models for the given criteria (column).
Abbreviations: HED, High Energy Detector; LED, Low Energy Detector.

Table 1 
Table Summarizing the Comparison of the Tested Spectral Models With the Measurement
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Since 307 counts are observed for LED (>50 keV) and 168 for HED (>300 keV), the observed ratio is 1.83. 
Considering that the two count numbers individually follow a Poisson statistic (but the ratio does not), the 
uncertainty on the ratio is ±0.35 (95% interval). It implies that, using this criterion, the two leader-based 
source TGF spectral models (160 and 300 MV) are incompatible. The effective area ratio analysis indicates 
that the models with ϵ ≥ 6.5 MeV are compatible. In particular, we cannot exclude ϵ = 8 and ϵ = 10 MeV. 
This is a similar result as obtained with the maximum likelihood analysis.

For this event, TGF spectra harder than previously expected are not excluded. AGILE did report observa-
tions of TGF surprisingly hard (up to 100 MeV), but they were later found explainable from instrumental 
effects (Marisaldi et al., 2019). Our analysis does not exclude that the mechanism presented in (Celestin 
et al., 2012) could not be responsible for producing TGFs with a sigtly harder energy spectra than fully 
developed RREA.

The results presented in this article are only valid for a single event, and it does not imply that leader models 
with potentials of 300 MV or less could explain other TGF (and TEB) events. It is also possible that because 
our method relies on the detection of a TEB, we are biased toward a population of strong TGFs, necessitat-
ing fully developed RREAs. TGFs that could originate from non-fully-developed RREAs (leader models) 
may never (or very rarely) produce a detectable TEB. This question could be addressable in the future, by 
applying this analysis to more TEB events. We list possibilities of new studies in the next section.

Finally, Table 1 also indicates the positron/electron ratio. The model giving the best fit (ϵ = 10 MeV) gives 
a ratio of 18.3%, and the range of compatible models give a ratio ranging from 15.2% to 18.3%. This range is 
compatible with estimations from the Fermi space telescope team (Briggs et al., 2011).

6. Conclusions and Future Work
We reported the observation of a Terrestrial Electron Beam by ASIM on March 24, 2019, originating from 
the rainbands of the tropical cyclone Johanina. The associated lightning stroke was detected by the GLD360 
network (VAISALA) in close temporal association and very close to the ISS's south magnetic field line 
footpoint. The TEB spectrum was resolved down to 50 keV for the first time, using the low energy detector 
(LED) of ASIM. A method to constrain the TGF source energy spectrum based on the TEB detection was 
presented. It relies on a reduction of the number of free parameters (altitude, angular distribution, and 
radial distance) possible due to TEB's properties. Comprehensive Monte Carlo simulations were performed 
to reproduce the observation, assuming several energy spectrum shapes of the source TGF. Using three 
criteria to evaluate the simulation results with respect to the observation (Maximum likelihood, Pearson's 
 2

r  and LED/HED count ratio), we showed that source TGF with, at least, a fully developed RREA spectrum 
  1 exp /E E   (with ϵ ≥ 6.5 MeV, Em = 40 MeV) is compatible with the observation. We could not ex-

clude harder models with ϵ = 8 MeV (Em = 40 MeV) and 10 MeV (Em = 40 MeV), that could potentially be 
explained by non-equilibrium acceleration of energetic electrons in lightning (Celestin et al., 2012).

In the future, we expect that a larger number of events will be processed using the method presented in 
this article. For ASIM, it will not be possible before several more years of data gathering, since it currently 
detects about 4 TEB a year, and not all of them present LED data (only turned ON during the night time of 
the ISS) or enough counts on LED and HED. In principle, the method presented in this article could also 
be applied/translated to events from the Fermi GBM TGF/TEB catalog (Roberts et al., 2018), that currently 
contains about 30 TEB events. Fermi GBM has and high energy (BGO-based) detectors that covers an ener-
gy range of ≈150 keV to ≈30 MeV. GBM's NaI detectors could also be used in principle (with an energy range 
of a few keV to 1 MeV) but no TEB spectrum using it was reported yet. Since TEB events present lower flux-
es (counts per second) than TGFs (typically 20 times), it makes the spectral analysis much less challenging 
than for TGF events: instrumental effects (dead-time, pile-up), affecting TGF analysis, can be mostly (if not 
totally) ignored for TEB spectral analysis.

Data Availability Statement
The data presented in this article is available in the following Zenodo repository: 
https://doi.org/10.5281/zenodo.4264459.

SARRIA ET AL.

10.1029/2021GL093152

8 of 10

https://doi.org/10.5281/zenodo.4264459


Geophysical Research Letters

The Geant4-based model for Terrestrial Gamma ray Flash (TGF) and associated electrons and positrons 
propagation in Earth atmosphere and environment (magnetic field) is available in the following repository: 
https://doi.org/10.5281/zenodo.2597039.
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