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Abstract
A 3D fluid model has been developed to simulate streamer discharges in unsteady airflow. The
model couples the drift–diffusion equation for charged particles, the Navier–Stokes equations
for air, the Poisson’s equation for the electric field, and the Helmholtz equation for
photoionization. It allows us to study electrical discharges at different timescales defined by
light and heavy particles and to investigate the effects of unsteady airflow. The model treats the
time integration in an implicit manner to allow longer time steps, which makes the simulation
of long-duration discharges feasible. Moreover, the model uses an unstructured mesh allowing
the calculation around solid bodies with complex geometries, and uses adaptive mesh
refinement to lower the computation time. The validity and accuracy of the model has been
verified by comparing its results with published results, which compares simulations in steady
air from six different streamer codes. Our results are consistent and among the most accurate
in terms of charge conservation. In order to investigate the influence of wind on streamer
discharges, we present results from simulation of a long-duration discharge, in which two
successive positive streamers are initiated from a positive polarity electrode in presence of a
transverse airflow. This simulation shows that the impact of airflow on positive streamers is
driven by the ions, and therefore the airflow effects are seen in ions timescale. Interestingly, we
observe that the positive streamer channel, while tilting in the direction of the wind, remains
attached to the surface of the electrode. The subsequent positive streamer emerges from the
charges remaining from the initial streamer, which have been moved over the electrode surface
toward the trailing edge. This mechanism shows and explains the clear tilting of the successive
positive streamers in the direction of the wind.

Keywords: streamer simulation, gas discharges, unsteady airflow, exponential integration
scheme, adaptive mesh refinement

(Some figures may appear in colour only in the online journal)

Introduction

Streamers are thin ionized channels that initiate large-scale
electric discharges such as sparks and lightning, and a deeper
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understanding of their nature will shed light on the fascinat-
ing dynamics of long sparks. Streamers have been extensively
studied both by numerical and experimental means [1–5].
Streamer dynamics are highly nonlinear and small changes
in the discharge conditions can lead to large variations in
streamer dynamics. The fast propagation and small dimensions
of streamers do not allow experiments to study the micro-
scopic characteristics of streamers with high resolution. Thus,
numerical investigation of streamer discharges have been used
to understand streamer dynamics, and numerous models of
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varying complexity have been developed. We can for instance
mention particle, hybrid particle/fluid and fluid models
[3, 6–9].

In this paper, we use a fluid description for cold atmo-
spheric plasma. We are interested in unsteady fluctuations in
air density and also the influence of the air velocity. A few
streamer models have tried to study the streamer propagation
in non-uniform air [10, 11]. There are two main physical mech-
anisms from which unsteady airflow might affect the electric
discharges. Firstly, the breakdown electric field is modified due
to variations in air pressure, which consequently affects the
streamer dynamics [10, 12]. Secondly, the airflow affects the
motion of charged particles by transferring momentum. The
role of this mechanism in electric discharges can be significant,
yet only a few research papers have investigated it [13, 14].
Therefore, we have included Navier–Stokes and turbulence
equations to model the airflow.

The model can study these effects in an accurate and realis-
tic manner by coupling electric discharge set of equations with
Navier Stokes and turbulence equations. It is fully three dimen-
sional, allowing calculation of realistic flows around com-
plex structures, and of streamers branching and interactions
with each other [15]. The model also allows the incorporation
of structures with complicated geometries and is built on an
unstructured mesh to capture the curves and complexities of
the structure. Unstructured meshes have previously been used
in streamer simulations [16].

The aim of the model is to capture the effects of unsteady
airflow on electric discharges. Part of these effects involve the
motion of ions, and therefore occur on longer timescales than
the streamer timescales. Our model integrates implicitly over
time, removing the Courant–Friedrichs–Lewy (CFL) restric-
tion on the time step size, which allows us to model long-
duration electric discharges of hundreds of microseconds.

The model is built on the commercial software Ansys
Fluent. Ansys Fluent is based on the finite-volume method
and allows the implementation and modification of equations
and numerical schemes associated to electrical discharges.
Furthermore, it supports adaptive refinement on unstructured
mesh which is considered necessary for our model.

In the following sections, we describe the physics of the
model, its implementation, and the numerical schemes used.
Later, we verify the model accuracy by comparing to a test case
from [17]. In the last section, we present a simulation of long-
duration discharge which shows the ability of the code to cou-
ple the airflow and electric discharge dynamics, and explains
the influence of the wind on the discharge.

1. Physical model

Charged particles dynamics are modeled by drift–diffusion
equations [18–20].

∂ne

∂t
= ∇ · (De ∇ne) + ∇ · (vair + μeEne)

+ ne(νi − νa) − Sre−p , (1.1)

∂np

∂t
= ∇ · (Dp ∇np) + ∇ · (vair + μpEnp)

+ neνi − Sre−p − Srn−p , (1.2)

∂nn

∂t
= ∇ · (Dn ∇nn) + ∇ · (vair + μnEnn) + neνa − Srn−p ,

(1.3)

where ne, np, and nn are the densities of electrons, positive
ions and negative ions and E is the electric field vector. The
loss terms Sre−p and Srn−p describe the charged particle losses
due to electron–ion and ion–ion recombination processes [21].
The scalar parameters D and μ are the diffusion and mobility
coefficients, and ν i, and νa are the ionization and attachment
rate coefficients. These swarm parameters are approximated
based on the local field and they are calculated using the
Bolsig + software or determined from experiments [22–28].

We assume that the superposition law holds and the veloci-
ties of particles can be approximated by adding the air velocity
vair to the drift velocity. The drift–diffusion assumption for the
velocity is valid for electrons as the time constant of momen-
tum transfer is short compared to timescales of electric field
variations in the streamer head [7, 29]. Although the ions have
a higher inertia than electrons, we included the drift–diffusion
model for ions in order to provide accurate results at microsec-
ond timescales. The model is justified since the ion velocities
are smaller than that of electrons and the ion displacement
in streamer timescales is negligible. The effect of eventual
delay to relax to the drift–diffusion velocity does not have
significance in long timescales.

Poisson’s equation for electrostatics (1.4) is used for the
calculation of the electric potential:

∇2φ = −ρc

ε0
, (1.4)

where φ is the electric potential, ε0 is the vacuum permittivity,
and ρc is the charge density. The electric field is the gradient
of the electrical potential and is calculated through:

E = −∇φ. (1.5)

Photoionization effects are modeled based on the approxi-
mation proposed by Luque et al [30] of the integral model of
photoionization from Zhelezniak et al [31]:

Sph(r1) =

∫

V1

dV1

∫

V2

1
4π

I(r2) f (|r1 − r2|)
|r1 − r2|2

dV2, (1.6)

where I(r2) is the emission of photons from differential volume
at r2, and Sph(r1) is the photoionization source term at r1. The
method proposed by Luque et al [30] approximates the absorp-
tion function, f(|r1 − r2|), by a series of exponential functions:

f (|r1 − r2|)
pO2

= pO2 |r1 − r2|
3∑

j=1

A je
−λ j pO2

|r1−r2|, (1.7)

where pO2 is the partial pressure of molecular oxygen. The
integral equation, (1.6), can then be calculated by solving a
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set of Helmholtz differential equations. The fitting param-
eters are taken from [32]. The set of Helmholtz equations
are [32]:

∇2Sph j
(r) − (λ jpO2)2Sph j

(r) = −A j p2
O2

I(r) j = {1, 2, 3},
(1.8)

with I(r) defined as:

I(r) =
pq

p + pq
ξ
νu

νi
Si(r), (1.9)

where pq/(p + pq) is a quenching factor, ξ is the photioniza-
tion efficiency, νu is the electron impact excitation frequency
of level u, and Si(r) is the electron impact ionization source
term [32]. Finally, the photoionization source term is:

Sph =

3∑

j=1

Sph j
. (1.10)

2. Numerical model

The general framework for implementing equations comes
from Ansys Fluent which allows us to implement user-defined
scalar (UDS) transport equations [33]. We used this capa-
bility to implement the drift–diffusion equations for charged
particles, Poisson’s equation for the electric potential and
the Helmholtz equations for photoionization. The general
form of the transport equation provided by Ansys Fluent
is [33]:

∂φ

∂t
+

∂

∂xi

(
vφ − D

∂φ

∂xi

)
= Sφ, (2.1)

where, v is the velocity of the transport of the variable φ, D is
the diffusion coefficient, and Sφ is the source term.

The drift–diffusion equations of charged particles have
been implemented using the general format of the transport
equation (2.1).

Poisson’s equation and the Helmholtz equations have been
implemented using the transport equation (2.1). We removed
the unsteady and advection terms from (2.1) and replaced the
source term with the source terms from (1.4) and (1.8). The
diffusion term in (2.1) is discretized by a central difference
scheme.

2.1. Spatial discretization

Ansys Fluent allows the use of several different schemes to
calculate the advection flux. In our simulations, we used a sec-
ond order upwind scheme and a slope limiter to bound the face
value to the values of the cells straddling the face.

n f = nc0 + ζ ∇nc0 · δrc0− f , (2.2)

where nc0 and nf are respectively the value of the variable at the
upwind cell center and face center, and vector δrc0− f , connects
the cell center to the face center. ζ is a scalar between 0 and 1
and is calculated as follows:

ζ = Max

[
Min

(
1,

nc1 − nc0

∇nc0 · δrc0− f

)
, 0

]
, (2.3)

where ζ is chosen such that the value of the n f would always
be bounded between nc0 and nc1. When ζ = 1 we have a 2nd
order upwind scheme, and when ζ = 0 we have a 1st order
upwind scheme.

The discretization of the diffusion flux is done using
the central difference, a second order scheme. This scheme
assumes a linear profile for the variable between the center of
the two cells straddling the face.

The gradient calculation is carried out using the least square
cell based method [34]. This method provides comparable
accuracy with lower computation time than Green Gauss node
based method [35, 36]. It preserves a 1st order spatial accu-
racy in an irregular mesh and a 2nd order spatial accuracy in a
regular mesh [35].

2.2. Time discretization

Ansys Fluent solves the UDS transport equations in an implicit
way, and allows the implementation of user defined time inte-
gration schemes. In this paper, we present results from two dif-
ferent integration schemes. The first is the classical 2nd order
backward difference scheme that provides accurate results
in small time steps. The second is an implicit ELP scheme
designed to allow the use of long time steps.

The 2nd order backward difference scheme is not accu-
rate in high electric field regions especially if the time step
size is large. To remedy this shortcoming, we implemented an
implicit ELP integration scheme.

We have implemented an integration scheme for electrons
and ions following [37], which uses an exact integration for
the linear part describing charged particles growth and decay
(ELP). The motivation behind this is the error in high electric
field regions around streamer tip [1, 4, 38]. If the time step
is not small enough, as compared to ionization timescale, the
second order scheme introduces a relatively large error. The
implicit ELP integration scheme integrates the source term due
to direct electron impact ionization in an exact manner, and
therefore does not suffer the inaccuracies in high electric field
regions at large time steps.

To derive the ELP scheme, we write the equation describing
the electron dynamics:

ṅe = (νi − νa)ne + Ne, (2.4)

where ne is the electron density and N represents the terms
due to photoionization, recombination and transport fluxes.
We integrate the linear growth and decay term, (ν i − νa)ne,
in an exact manner and the other term, N, is integrated using
an implicit 2nd order scheme. The derivation of the ELP inte-
gration scheme for electron density, ne, is similar to the one
described in [37], which we modified to incorporate adaptive
time stepping. The derivation of the scheme and the terms
that are required to be passed to Fluent are summarized in
appendix A.

ELP schemes are not directly applicable to ions. Ion growth
and decay dynamics include terms that are not linear w.r.t. ion
densities, but linear to electron density.

ṅi = νine + Ni. (2.5)
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Figure 1. Contours of Rp (2.7) variable near the streamer tip is shown on the left; the contours of the Rpopt (2.8) variable is plotted on the
right. The variable Rpopt allows us to identify the streamer propagation direction and refine the mesh accordingly.

The ion dynamics has a large term due to electron impact ion-
ization, and is solved by taking into account the ionization
from the linear part of (2.4). The linear part of the growth
and decay dynamics is integrated in an exact manner, and the
other parts of the dynamics are integrated implicitly with sec-
ond order accuracy. A detailed derivation of the integration
scheme for ions is also provided in appendix A. The advan-
tages of using the implicit ELP scheme over the second order
backward difference scheme are presented in section 3.

The spatial and temporal discretization presented above
lead to a pseudo-linear system of equations:

A(xn+1)xn+1 = b(xn+1, xn), (2.6)

where the matrix A includes the coefficients of variables and
vector b includes the source terms and the explicit contribu-
tions from previous time steps. Both A and b are dependant
on the solution variables at the current time step. Fluent solves
this system of equations in an iterative way, allowing A and b
to update after each iteration. The algebraic multigrid method
(AMG) has been used to solve the set of linearized equations
at each iteration [39].

The solution convergency at the end of each time step is
checked based on the scaled residuals defined by Ansys Fluent
[33].

2.3. Adaptive mesh refinement

Due to the multiscale nature of streamer discharges [40], it
is crucial for 3D streamer simulations to use adaptive mesh
refinement. A typical length of charge separation in a streamer
head is 4 μm which can be several orders of magnitude
smaller than the size of the domain, and therefore without
adaptive mesh refinement the computation time would be
extremely high. In this work, we use the adaptive mesh refine-
ment from Ansys Fluent that is based on the hanging node
method [33].

An important aspect of adaptive mesh refinement is the
criterion to choose the refinement region. Our criterion for

refinement is based on the parameter:

Rp =
Sph2

|E|
max(Sph2

|E|) , (2.7)

where Sph2
is the 2nd term of the photoionization source (1.10)

and |E| is the electric field magnitude. The contour plots of
Rp is shown in figure 1 (left). Including both photoionization
and electric field has two advantages. Firstly, the refiner does
not refine the streamer body due to low electric field inside the
streamer body. Secondly, it refines the high electric field region
around the electrode only when there is high electron density
near the electrode in the form of a patch or a streamer, other-
wise it skips the regions around the electrode. Consequently,
the high density mesh is focused in the streamer head and the
region in front of it.

The algorithm works as follows:

• We evaluate the value of max(Sph2
|E|) in the domain, and

then we calculate the value of Rp from (2.7) for every cell.
• If the value of Rp in a cell is larger than some pre-specified

values {Rp1
, Rp2

, Rp3
}, then the cell’s volume should be

smaller than a pre-specified value {Vp1
, Vp2

, Vp3
}, oth-

erwise the cell is considered large, and is marked for
refinement. The mesh refinement layers in front of the
streamer are shown by {p1, p2, p3}, and {Vp1

, Vp2
, Vp3

}
are the corresponding maximum cell volume allowed in
that refinement level.

• The volumes {Vp1
, Vp2

, Vp3
}, are chosen in advance such

that the maximum dimension of the cell is smaller than
the ionization length (1/α), where α is the townsend
coefficient of ionization.

The above algorithm leads to different refinement levels
covering the streamer tip, resulting in a mesh density that grad-
ually increases toward the streamer tip. Figure 2 shows the
mesh around the streamer tip and the different mesh density
levels.

Figure 2 (left) shows that the refinement region fully covers
the streamer tip. However, the refinement region also spreads
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Figure 2. Mesh around the streamer tip before (left) and after (right) using the optimizer algorithm based on Rpopt (2.8) to limit mesh
refinement to the region in front of the streamer. Contours of the charge density ρc is also plotted to show the full coverage of the streamer tip.

Figure 3. The 1st panel shows the initial positive ions density np and the configuration of the simulation domain. The 2nd and the 3rd panels
show the electron density ne and electric field |E| at the end of the simulation (after 15 ns).

to the side of the streamer tip which is considered unneces-
sary, as the streamer is not propagating in that direction. To
improve the algorithm, we have added a second criterion that
prevents refinement of cells in these regions, which is based
on the optimization parameter Rpopt

defined as:

Rpopt
=

∇Sph2
· ve

|∇Sph2
| |ve|

(2.8)

and is in fact the cosine of the angle between the gradi-
ent of the photoionization source term and electrons velocity
vector. Figure 1 (right) shows the contours of Rpopt

around
the streamer, and that the unnecessary mesh refinement on
streamer sides can be avoided if we prevent refinement of
cells where |Rpopt

| < 0.75. Figure 2 compares the mesh around
the streamer tip before (left) and after (right) applying this
improvement. We note that the above criteria do not depend on
the direction of the electron velocity, the refinement algorithm
is therefore applicable for both positive and negative streamers.

We also have an extra criterion that refines the streamer
body up to 10 μm. The criterion is based on the positive ion
density such that only cells having a density above a given
threshold are chosen for refinement.

Finally, a criterion has been added to moderately refine the
mesh at the vicinity of the electrode; it is simply based on the
distance between the cell and the electrode.

3. Streamer model comparison

The accuracy of the model is verified by comparing the model
results to other streamer codes. Bagheri et al [17] have per-
formed a comparison of six streamer codes from different
research groups. They compared the accuracy and perfor-
mance of the codes with respect to three test cases. Here, we
have simulated the third test case, which is an axisymmetric
simulation of a streamer discharge in air. The configuration of
the simulation domain is shown in figure 3. In order to enhance
the electric field, an spherical Gaussian patch of positive ions
with a max density of 5 × 1018 m−3 and an e-folding radius of
0.4 mm is placed in the domain. The top plane electrode is at
potential φ = 18.75 kV and the lower electrode is grounded.
The transport and rate coefficients, and photoionization param-
eters are calculated in the same way as in [17]. It is to be noted,
that we performed the simulation using a 3D model instead
of an axisymmetric one. Furthermore, we adopt the same
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Figure 4. Comparison of the results from different streamer codes. The maximum electric field Emax versus L(t) (top left), where L(t) is the
position of the Emax from the upper electrode; L(t) − vt versus time (top right) with v = 0.06 cm ns−1; the total electron count in the domain
versus L(t) (bottom left); the total charge Qtot in the domain versus L(t) (bottom right). The results from our model is shown by the DTU–X
ps–Y μm tag, where X and Y are respectively the time step size and the minimum mesh size in the streamer tip. The other results are from
[17].

Table 1. The settings and the run times of the codes compared in [17]. The data in this table are taken from [17]. All the simulations were
performed in a machine using Intel(R) Xeon(R) E3-1271 v3 CPU running at 3.6 GHz [17].

CWI FR ES CN DE

Implicit time integration � �
Unstructured mesh � �
Adaptive refinement � � �
Min grid size 3.0 μm 6.0 μm 3.9 μm 2.0 μm 4.1 μm
Max Ncells 7.6 × 104 2.9 × 105 2.0 × 106 7.2 × 105 7.6 × 105

Time step size dyn dyn 1.0 ps dyn dyn
CPU cores 4 1 1 4 6
Run time <5 min 34 min 72 h 26 h 43 h

Table 2. The settings and the run times of the DTU model running
in axisymmetric configuration using both a fixed mesh and the
adaptive mesh refinement. Both simulations were performed in a
machine using Intel(R) Xeon(R) Gold 6226R CPU running on the
base frequency of 2.9 GHz.

DTU DTU(AMR)

Implicit time integration � �
Unstructured mesh � �
Adaptive refinement �
Min grid size 2.5 μm 2.5 μm
Max Ncells 3.0 × 106 2.6 × 105

Time step size 10.0 ps 10.0 ps
CPU cores 4 4
Run time 11 h 66 min

notation as Bagheri et al [17] to refer to different streamer
codes either by the name of the institute or the country of
origin.

We performed three simulations with different time step
and minimum mesh sizes. The first one uses a time step
size of 2.5 ps and a minimum mesh size of 2.5 μm; it is
tagged ‘DTU–2 ps–2.5 μm’ in figure 4. In the second sim-
ulation (‘DTU–2 ps–5 μm’), we used a time step size of 2 ps,
and a minimum mesh size of 5 μm. In the third simulation
(‘DTU–10 ps–5 μm’), the time step and the minimum mesh
size were respectively 10 ps and 5 μm. Figure 3 (2nd and 3rd
panels) shows the contour plots of electron density and electric
field at 15 ns from ‘DTU–2 ps–5 μm’ simulation.
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Figure 5. The maximum electric field Emax versus L(t) (left); L(t) − vt expression vs time (right) where v = 0.06 cm ns−1. The DTU results
tagged DTU–IMP–X ps–Y μm correspond to the model using implicit integration scheme, and X and Y show respectively the time step size
and the minimum mesh size in the streamer tip. The other results are from [17].

In figure 4, we compare some important characteristics of
streamer simulations with the study by Bagheri et al [17].
Figure 4 (top left) compares the maximum electric field at the
tip of the streamer at different lengths. The maximum elec-
tric field from our model is in good agreement with the results
from CWI and DE. The results from ‘DTU–2 ps–2.5 μm’ is
almost identical to the results from the DE model. Interest-
ingly, the result from ‘DTU–10 ps–5 μm” simulation is closer
to the results from ‘DTU–2 ps–2.5 μm’ than the result from
‘DTU–2 ps–5 μm’ simulation. The reason is that the 10 ps
time step size corresponds to a CFL value in the streamer tip
region that is close to 1, which leads to lower numerical dif-
fusion and dispersion, and hence increases the accuracy of the
solution.

Figure 4 (top right) shows the variation of L(t) − vt where
L(t) is the distance between the maximum electric field and the
upper electrode and v is an estimate of the propagation velocity
set to 0.06 cm ns−1. The results from CWI, DE and ‘DTU–
2 ps–2.5 μm’ are almost identical. In figure 4 (bottom left)
the total number of electrons in the domain is shown vs time.
The results from DTU model are in agreement with the results
from the CWI and DE models. And finally, figure 4 (bottom
right) compares the conservation of charge in different codes
by plotting the total charge Qtot in the domain. The DTU model
conserves the electric charge even when very large time steps
are used. This attribute is mostly due to the use of the implicit
ELP integration scheme in time, where the scheme uses exact
integration for ionization and attachment source terms.

The comparison of the models showed that the results
from our model are in agreement with other streamer codes,
specifically with the codes from CWI and DE. Our code did
exceptionally well in conserving the charges when using long
time steps. This comparison demonstrate the accuracy of the
model to simulate streamer simulation in steady air. In the
next section, we simulate a long-duration electric discharge in
unsteady air.

The settings and the run times of the DTU model and of
the models from [17] are reported in tables 1 and 2. For DTU
model, we performed the same simulation in an axisymmetric
configuration with both fixed mesh and adaptive mesh refine-
ment. It should be mentioned that implicit schemes require
more computational time per time step; however, they are not

limited by the CFL requirement or the dielectric relaxation
time as opposed to explicit models, and can use longer time
steps [41]. Specifically, as we will see in the next section,
the implicit models can be very effective in pulsed stream-
ers simulations by using long time steps between the streamer
pulses.

In order to compare the performance of the time integration
schemes, we repeated the previous simulations using the 2nd
order backward difference scheme.

Figure 5 compares the results of the implicit integration
scheme to the results obtained using the implicit ELP scheme
along with the results from CWI and DE models. Figure 5 (left)
compares the streamer tip electric field vs streamer length.
Figure 5 (right) shows the variation of L(t) − vt in time. The
implicit and implicit ELP schemes perform similarly at the
small time step size of 2 ps. However, increasing the time step
size to 10 ps leads to an inaccurate solution for the 2nd order
implicit integration scheme, while the implicit ELP scheme
remains accurate.

To conclude the comparison, both schemes are stable when
taking large time steps. However, inaccuracies develop when
using the 2nd order implicit integration scheme. The implicit
ELP integration scheme remains stable and accurate while
using long time steps, which is essential to model long-
duration discharges. Furthermore, the implicit ELP scheme
allows the solution to converge faster in each time step, leading
to a lower computation cost.

4. Positive streamers exposed to a transverse
wind

We modeled the behavior of positive streamers in the presence
of lateral wind, based on an experiment performed in [14]. The
experiment shows that the positive streamer corona when sub-
jected to a transverse wind, tilts in the direction of the wind.
Here, we have devised a simulation to capture the effect of the
airflow, and investigate the main mechanisms that affect posi-
tive streamers in low speed airflow. This simulation demon-
strates the ability of our model to simulate long discharges
coupled with unsteady airflow, and also helps us understand
the physical mechanism explaining the tilting.
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First, we need to point out some peculiarities of this simu-
lation:

(a) The effect of the airflow on electric discharges reveals
itself at the timescales corresponding to heavy particles,
and therefore the duration of this simulation needs to
be long (around 0.1 ms), which renders the simulation
very challenging. However, the implicit ELP integration
scheme allows us to take very large time steps and makes
this simulation feasible.

(b) We use a simplified chemical kinetic model to lower the
computation time knowing that the duration of our simu-
lation is in the order of milliseconds, and that interme-
diate ionic species (such as N+

2 , O+
2 , N+

4 , O2N+
2 , . . . )

are converted to O+
4 on a timescale of few nanoseconds

[21, 42–44]. Therefore, the charged particles considered
in the model (1.1) and (1.2) are electrons, positive O+

4
ions and negative O−

2 ions, for which we calculate the
ion mobility, diffusion coefficient and recombination rate.
The effects of detachment processes and water content
are neglected in this simulation in order to focus on
understanding the effects of airflow.

(c) In this simulation, we have streamers that reach the stag-
nation point where the electric field in their tip fades away,
the propagation stops and the streamer vanishes. Previ-
ously, Pancheshnyi [43] and Starikovskiy [44], using a
first order fluid model and local field and density approxi-
mation, simulated positive streamers that eventually came
into stagnation. In their simulations, the streamer head
became narrower while the electric field at the streamer
tip grew indefinitely and finally the simulation could not
continue [43, 44]. We performed an axisymmetric simula-
tion of a positive streamer using the local field and density
approximation for ionization and experienced the same
behavior, see figure 6. The electric field in the streamer tip
grows unboundedly and eventually the simulation stops,
similar to the behavior observed in [43, 44]. However,
the local field and density approximation of the ionization
source term is not accurate at high fields, as a large con-
tribution to ionization comes from fast, high energy elec-
trons which will spread the ionization over a significant
length. Therefore, we smooth the ionization source term
in high electric field regions to mimic the non-local aspect
of electron ionization. We solved the following equation
to smooth the ionization source term:

L2∇2Sni − Sni = −neνi, (4.1)

where L is the smoothing length scale, and Sni is
the smoothed ionization source term, used in the
drift–diffusion equations for electrons and positive ions
(1.1) and (1.2). We have set the boundary condition at
electrode surface for the smoothing equation to Neumann
zero (∂Sni/∂n = 0). We can note that the total number
of ionization events in the domain is not altered by this
smoothing process. By integrating both sides of (4.1) over
the entire domain, we have:

Figure 6. This plot shows the evolution of the streamer tip electric
field in an axisymmetric simulation without the airflow and using
the same domain and parameters as the 3D simulation presented in
figure 8. As the streamer propagates, it narrows down and the field
in the streamer tip rises indefinitely and eventually the simulation
stops, similar to the behavior described in [43, 44].

∫

V
L2∇2Sni dV −

∫

V
Sni dV = −

∫

V
neνi dV (4.2)

and, ∫

V
Sni dV =

∫

V
neνi dV , (4.3)

since the integral of the diffusion term over the volume
cancels. Figure 7 compares the ionization source term Si

using the local field approximation in the streamer tip with
the smoothed ionization source term Sni. The smoothing
length scale, L, is limited to 4 μm in high field regions, and
as shown in figure 7 (top), the smoothing process slightly
changes the ionization source term near the tip, and as we
get away from the streamer tip, the smoothing effects dis-
appear. The smoothed ionization source term solves the
issue of the unbounded electric field for a non-propagating
streamer.

In figure 8, we show the simulation domain in a point-
plane electrode configuration with the point anode at 8.5 kV
electric potential. In order to experiment with wind speed
magnitude coherent with the ones found near the tip of wind
turbine blades, we set a lateral wind of velocity vair = 50 m s−1,
blowing transversely. To initiate the first streamer, we place a
neutral Gaussian plasma patch of electrons and positive ions
on the tip of the electrode to initiate the streamer. The maxi-
mum density of the patch is 1014 m−3 and the e-folding radius
is 0.14 mm. The charged particles boundary condition at the
point electrode surface is set to absorb all the incoming charge
fluxes, and no out flux.

The air streamlines around the electrode are shown in
figure 9. Compressible Navier Stokes equations for an ideal
gas along with shear-stress transport k–ω turbulent model [45]
is used to calculate the airflow around the electrode.

The 8.5 kV electric potential applied to the point electrode
leads to a maximum electric field of 110 kV cm−1 on the elec-
trode tip. The streamer emerges from the plasma patch and
propagates in the inhomogeneous field created by the anode
while a uniform lateral wind is blowing to the streamer. Dur-
ing the initial phase after the streamer initiation, the streamer
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Figure 7. The top plot compares the value of ionization source term,
Si, calculated using the local field approximation and the smoothed
one Sni. The z axis is the streamer symmetry axis zoomed around the
streamer tip. The bottom plot shows the corresponding electron
density and electric field profiles. The comparison has been done on
data from a similar test case in a 2D axisymmetric simulation.

Figure 8. The discharge gap used in the simulation, where a lateral
wind (vair = 50 m s−1) is blowing over the point to plane electrode
configuration.

tip electric field rises to around 190 kV cm−1 and the streamer
velocity Vs reaches 0.45 mm ns−1 (see figure 10). As the
streamer length increases, the streamer thickness shrinks and
the electric potential in the streamer tip decreases, such that
there is a steady decline in the electric field and streamer veloc-
ity. The streamer propagation slows down till it reaches stag-
nation, at this point as seen in figure 10 (right) the electric field
in the streamer tip fades out.

The plots of the electron density in figure 11, show the prop-
agation of the streamer over time. The last panel in figure 11
shows the electron density at 50 μs, which is long after the
streamer has stopped propagating and clearly shows the effect
of the airflow and electron decay.

Figure 9. The air streamlines over the surface of the electrode.

The streamer reaches a maximum channel length of
3.15 cm. In order to compare the channel length to the one
measured in experiments, we try to choose an experiment with
a single streamer to avoid the streamer interaction effects.
However, it seems most experiments in atmospheric pressure
lead to a collection of streamers rather than single streamers
[5]. Here, we have chosen an experiment from [46] that pro-
duces relatively few streamers, and hence the streamer inter-
actions are low. In one of their experiments, they captured
positive streamer discharges in a gas composition of 20% oxy-
gen and 80% nitrogen at a pressure of 200 mbar. In the exper-
iment, the electrode with an 11 kV potential initiated a few
streamers that crossed a 16 cm gap. If we scale down the
streamer length using the Townsend similarity law to account
for the low pressure, we will have an equivalent streamer
length of 3.2 cm in atmospheric pressure. This result in an
electrode potential to streamer length ratio of 3.4 kV cm−1, the
corresponding ratio in our simulation is around 2.7 kV cm−1,
which is in good agreement. Our results are also in good agree-
ment with the results from [44], where they report an average
electric field inside the streamer of 3.25 kV cm−1.

After the streamer stops propagating and the electric field in
the streamer tip vanished, the simulation enters the quiescent
phase. In this phase, the density of the charged particles cre-
ated mostly by the 1st streamer are continuously decreasing.
The main mechanisms removing charged particles are elec-
tron absorption by the anode, attachment, and ion–ion and
electron–ion recombination. The total number of charged par-
ticles in the discharge gap is plotted in figure 12 (left), and
we can notice a large decrease in the total number of par-
ticles after the 1st streamer. The electron density inside the
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Figure 10. The evolution of streamer velocity Vs and the maximum electric field Emax over the duration of the 1st streamer. At t = 0.8 μs the
streamer reaches stagnation and the electric field in the streamer tip fades out.

Figure 11. Contour plots of the electron density ne for the 1st streamer at different time instants. The deflection of the streamer channel in
the direction of the wind is negligible during its propagation. However, after streamer stagnation point (0.8 μs) the streamer channel
continuously tilts in the direction of the wind.

Figure 12. The plot on the left shows the evolution of total number of charged particles N in the discharge gap. The right plot shows the
steady increase of the maximum electric field Emax in the quiescent phase as the positive charges are removed and pushed away from the
anode. The time axis on the left plot has been limited to the first 4 μs, as the rate of the charged particles removal is very high in this time
window.

domain is reduced to a greater extent than the positive ions,
mostly due to absorption by the anode. A similar behavior has
been observed in [18]. The positive charge density remainder
from the 1st streamer dampens the field around the electrode,
inhibiting the emergence of a new streamer. Figure 12 (right),
shows that the electric field near the electrode rises over time
as the positive ions density is reduced and pushed further away

from the anode. Note that the implicit ELP integration scheme
was essential in performing this simulation, as we had to use
very long time steps.

During the quiescent phase, we observe a very interesting
effect. The plasma channel remaining from the initial streamer,
remains attached to the electrode surface while being moved
by the air, as shown in figure 13. The streamer remains attached
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Figure 13. Contour plots of the electron density ne (top row) and ionization source term Si (bottom row), during the quiescent phase. The
streamer channel is continuously tilting in the direction of the airflow while remaining fully attached to the electrode surface. The reason is
the constant flow of the electrons inside the streamer channel toward the electrode, and the subsequent ionization of the air in their path
(plots of Si in the bottom row), which extends the plasma channel toward the electrode surface.

Figure 14. Contour plots of electron density ne in the vicinity of the electrode. The first plot shows the electron density remaining form the
1st streamer, moved by the airflow toward the trailing edge. The subsequent plots clearly show the emergence of a new streamer from these
remaining charges.

to the surface, notwithstanding the separation of the airflow
from the electrode surface. The reason for this behavior is
that the electrons inside the streamer channel are continuously
moving toward the electrode, and they ionize the air in their
path and maintain the channel (see figure 13). Therefore, the
streamer channel remains constantly connected to the elec-
trode surface. It should be noted that the electric field inside the
streamer channel near the electrode, due to charge removal, is
high enough to provide sufficient ionization, which is shown in
the ionization source plots in figure 13 (bottom row). The sig-
nificance of this sustained plasma channel connection will be
understood in the next section, where we discuss the initiation

of a new streamer from the remaining charges in this plasma
channel.

During the quiescent phase the electric field keeps rising
as shown in figure 12 (right), and eventually it will reach the
Laplacian field in the absence of screening charges allowing
the possible initiation of a 2nd streamer. However, the rise in
the electric field was slow and in order to speed up the simula-
tion, after 50 μs, we increased artificially the electrode poten-
tial to 10.5 kV with a rise time of 100 ns. Then the charge
density remaining from the 1st streamer and transported by
the wind over the surface of the electrode, developed into a
new streamer. The plots of electron density in figure 14 clearly
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Figure 15. Contours plots of electron density ne and electric field |E| for the 2nd streamer at different time instants. Streamer is initiated
from the trailing side of the electrode, and starts following the pre-ionized channel left by the 1st streamer. Later, it changes its direction and
starts to follow the field lines as the pre-ionized density in the channel lowers. The streamer reaches stagnation at a length of 3.75 cm, shown
in the 3rd plot, and during the next 50 μs it continuously tilts in the direction of the wind. The last plot shows the tilted streamer channel
which is still attached to the electrode at 104 μs.

Figure 16. The evolution of streamer velocity V s and the maximum electric field Emax over the duration of the 2nd streamer. At
time = 51.56 μs the 2nd streamer reaches stagnation.

show the initiation of a streamer from the residual charges of
the 1st streamer.

Initially, the streamer starts to follow the pre-ionized path
remaining from the 1st streamer, as positive streamers tend
the follow the region with a higher free electron density [47].
Later, as the streamer move away from the electrode, the elec-
tron density in the pre-ionized path decreases and the streamer
starts to change direction and follows the field lines instead.
In figure 15, the plots of electron density and electric field

clearly demonstrate the curved path of the 2nd streamer. In
the final 1 cm of the 2nd streamer, it shifts slightly toward
left due to the field created by the residual charges of the 1st
streamer. The new streamer propagates for 3.75 cm, which is
longer than the 1st streamer as the potential of the electrode
has been increased from 8.5 kV to 10.5 kV. Figure 16, shows
the evolution of the electric field and streamer velocity for
the 2nd streamer. The maximum length and the propagation
time of the 2nd streamer is longer than the 1st one due to a
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higher electrode potential. Similarly to the 1st streamer, the
2nd streamer stops propagating, and another quiescent phase
starts with a sharp reduction of the charged particle densities
and a steady increase in electric field near the electrode. We
modeled this phase until 104 μs, which show an even more
pronounced tilting of the 2nd streamer plasma channel in the
direction of the wind. The channel also remains attached to the
electrode.

5. Conclusion

A 3D model is presented to couple the dynamics of streamer
discharges and unsteady airflow. The model allows us to inves-
tigate the effects of unsteady airflow on electric discharge
characteristics at different timescales. The effects of unsteady
airflow on streamer discharges through charge redistribution
manifest in longer timescales than the typical timescales of
a streamer discharge. We therefore implemented a model
that allows large time step sizes by using an implicit ELP
time integration scheme. The model also uses an unstructured
mesh allowing the incorporation of solid bodies with com-
plex geometries. Comparing the results of the model with a
test case from literature, shows a good agreement. The abil-
ity of the model to couple streamer discharges and unsteady
airflow was demonstrated by a simulation of the initiation and
termination of two successive positive streamers in transverse
airflow.

The results of the simulation can be summarized by several
points:

• During its propagation, the 1st positive streamer had only
a small tilting in the direction of the wind due to its short
duration. It shows that the effect of the low speed air-
flow on the electric discharges manifests itself on longer
timescales than the ones of the streamer propagation
driven by electron timescales.

• After the stagnation of the 1st streamer, the streamer chan-
nel is moved by the air. However, it remains attached to
the surface of the electrode, even though the air stream-
lines suggest that the streamer channel should separate
from the electrode surface. This is an intrinsic character-
istic of positive streamers and is due to the flow of elec-
trons from the streamer channel toward the electrode and
subsequent ionization inside the plasma channel near the
electrode surface. It is uncertain that negative streamers
remain similarly attached since electrons move away from
the electrode.

• The subsequent streamer was initiated from the residual
charges of the 1st streamer close to electrode surface.
These charges have been swept across the electrode sur-
face by the wind. The results suggest that positive stream-
ers in lateral wind have a tendency to emerge from the
trailing edge of the electrode.

• The 2nd streamer, emerging from the trailing edge of the
electrode, shows a clear tilting in the direction of the wind.
The tilting later intensifies, as the streamer channel keeps
moving in the direction of the wind.

This simulation shows that the effects of the low speed
airflow on positive streamers mainly result from the charged
particle redistribution in the domain which will affect the
subsequent streamer discharges.
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Appendix A

This appendix gives a derivation of the integration scheme for
charged particles and describe how it is implemented in Ansys
Fluent. The derivation of the integration scheme for electrons
is similar to [37]. In the following, we show the modifications
we brought to the scheme to allow a varying time step size and
its implementation in Ansys Fluent. The derivation of the inte-
gration scheme for ions also follows [37] with a higher level
of complexity coming from the fact that the linear term in ion
dynamics is proportional to electron density and not the ion
density.

A.1. 2nd order implicit ELP integration scheme for electrons

Starting from the Taylor series expansion of the electron
density nen+1 at the time step n + 1 given by:

nen+1 =

∞∑

k=0

n(k)
en

Δtk
n

k!
, (A.1)

where the jth time derivative of the electron density is given
by:

n(1)
en

= λn+ 1
2
nen + Nen , (A.2)

n(2)
en

= λ2
n+ 1

2
nen + λn+ 1

2
Nen + N(1)

en
, (A.3)

...

n( j)
en

= λ j

n+ 1
2
nen +

j−1∑

m=0

λ j−m−1
n+ 1

2
N(m)

en
, (A.4)

where λn+ 1
2

= (νin + νin+1 − νan − νan+1)/2 is the effective
ionization frequency averaged between steps n and n + 1,
and Nen represents the other source terms, which include the
variations due to fluxes, photoionization and recombination.
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Replacing (A.4) inside the Taylor series expression (A.1), we
have:

nen+1 =

∞∑

k=0

λk
n+ 1

2
nen

Δtk
n

k!
+

∞∑

k=1

k−1∑

m=0

λk−m−1
n+ 1

2
N(m)

en

Δtk
n

k!
. (A.5)

The first term is the familiar exponential growth term and
the second term can be simplified by changing the order of
summation such that we have:

∞∑

m=0

N(m)
en

∞∑

k=m+1

λk−m−1
n+ 1

2

Δtk
n

k!

=
∞∑

m=0

N(m)
en

λm+1
n+ 1

2

⎛
⎜⎝e

λ
n+ 1

2
Δtn −

m∑

k=0

(
λn+ 1

2
Δtn

)k

k!

⎞
⎟⎠

=

∞∑

m=0

N(m)
en

Δtm+1
n Qm+1

(
λn+ 1

2
Δtn

)
, (A.6)

with Q j defined as [37] by:

Q j(x) =
ex − E j(x)

x j
, E j(x) =

j−1∑

k=0

xk

k!
(A.7)

In order to have a 2nd order implicit ELP integration
scheme the integration scheme needs to equalize the Taylor
series up to the 2nd order terms:

Assuming the following form for the integration scheme:

nen+1 = nene
λ

n+ 1
2
Δtn

+ γΔtnNen+1 + βΔtnNen (A.8)

and expanding Nen+1 in Taylor series, we have:

nen+1 = nene
λ

n+ 1
2
Δtn

+ (γ + β)ΔtnN(0)
en

+

∞∑

k=1

γΔtk+1
n N(k)

en

(A.9)
(A.9) and (A.6) are then equal up to the 2nd order term if

γ = Q2

(
λn+ 1

2
Δtn

)
and β = Q1

(
λn+ 1

2
Δtn

)
− γ

(A.10)
The integration scheme to calculate nen+1 now depends on

Nn, which includes the flux terms and the source terms from
the time step n. In order to have an implicit solver, we derive a
similar expression for nen−1 and combine the two expressions
to remove the dependency on Nn. We proceed as follows:

The Taylor series expansion of the electron density at
previous time step, nen−1 :

nen−1 =

∞∑

k=0

n(k)
en

(−1)k Δtk
n−1

k!
, (A.11)

after following a similar derivation path as that of nen+1 , we
have:

nen−1 = nene
−λ

n− 1
2
Δtn−1

+ γ ′Δtn−1Nen+1 + β′Δtn−1Nen ,
(A.12)

where λn− 1
2

= (νin + νin−1 − νan − νan−1 )/2 is the effective
ionization frequency averaged between steps n and n − 1, and

γ ′ =
Δtn−1

Δtn
Q′

2

(
λn− 1

2
Δtn−1

)
,

and
β′ = Q′

1

(
λn− 1

2
Δtn−1

)
− γ ′, (A.13)

with Q′
j defined as:

Q′
j(x) =

e−x − E′
j(x)

x j
, E′

j(x) =

j−1∑

k=0

(−1)k xk

k!
. (A.14)

We combine the approximations of nen+1 and nen−1 in such a
way to remove the explicit dependenceon Nen . The expressions
of the nen+1 and nen−1 are:

nen+1 = nen e
λ

n+ 1
2
Δtn

+ γΔtnNen+1 + βΔtnNen . (A.15)

nen−1 = nene
−λ

n− 1
2
Δtn−1

+ γ ′Δtn−1Nen+1 + β′Δtn−1Nen .
(A.16)

We multiply the first equation by scalar A and subtract it from
the second equation, and then we choose the scalar A such that
the coefficient of Nen in the final equation would be zero. The
final equation solved in terms of Nen+1 would be:

Nen+1 =
Anen+1 − nen

(
Ae

λ
n+ 1

2
Δtn − e

−λ
n− 1

2
Δtn−1

)
− nen−1

(AγΔtn − γ ′Δtn−1)
,

(A.17)
where,

A =
β′Δtn−1

βΔtn
. (A.18)

The drift–diffusion equation for electrons (1.1) can now be
written as:

Nen+1 = ∇ · (De ∇ne) + ∇ · (vair + μeEne) − Sre−p, (A.19)

where the ionization and attachment source term are removed
from the equation, and the unsteady term, ∂ne

∂t , is approximated
by Nen+1 .

At the initial time step we do not have the value of nen−1 .
Therefore, we have to integrate the terms represented by Nen+1

using a first order scheme. The scheme to calculate the nen+1

would be:

nen+1 = nene
λ

n+ 1
2
Δtn

+ Q1

(
λn+ 1

2
Δtn

)
ΔtnNen+1 . (A.20)

Solving for Nen+1 , we have:

Nen+1 =
nen+1 − nene

λ
n+ 1

2
Δtn

Q1

(
λn+ 1

2
Δtn

)
Δtn

. (A.21)

Ansys Fluent expects the unsteady term in the UDS trans-
port equations to be decomposed into implicit and explicit
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terms, they are respectively called ‘apu’ and ‘su’ in the Fluent
manual [48], and are given by:

apu =
−A

(AγΔtn − γ ′Δtn−1)
. (A.22)

su = −
−nen

(
Ae

λ
n+ 1

2
Δtn − e

−λ
n− 1

2
Δtn−1

)
− nen−1

(AγΔtn − γ ′Δtn−1)
. (A.23)

We have limited the use of the implicit ELP integration
scheme to the regions of the domain where the electric field
magnitude is strictly above the breakdown field, i.e. where the
electron density grows exponentially. In the other regions, the
integration is done by a classical 2nd order backward differ-
ence scheme. The two schemes will provide the same level
of accuracy near the breakdown field, therefore there is no
need for a special treatment of the interface between the cells
using the exponential and the 2nd order backward difference
schemes.

A.2. 2nd order implicit ELP integration scheme for ions

We now describe the derivation of the integration scheme for
the ions. Starting from the Taylor series expansion of the ions
density at the next time step, nin+1 :

nin+1 =
∞∑

k=0

n(k)
in

Δtk
n

k!
(A.24)

where the jth time derivative of the ions density is given by:

n(1)
in

= νi
n+ 1

2

nen + N(0)
in

, (A.25)

n(2)
in

= νi
n+ 1

2

n(1)
en

+ N(1)
in

, (A.26)

...

n( j)
in

= νi
n+ 1

2

n( j−1)
en

+ N( j−1)
in

(A.27)

where νi
n+ 1

2

is the averaged ionization frequency between

steps n and n + 1, and Nin represents the other terms which
includes fluxes, photoionization and recombination. As it can
be seen in (A.27), we also need to have the general expression
for jth time derivative of the electron density:

n( j)
en

= λ j

n+ 1
2
nen +

j−1∑

m=0

λ j−m−1
n+ 1

2
N(m)

en
. (A.28)

Replacing (A.27) in the Taylor series expansion (A.24), we
have:

nin+1 = nin + nenνi
n+ 1

2

∞∑

k=1

λk−1
n+ 1

2

Δtk
n

k!
+ νi

n+ 1
2

∞∑

k=2

×
k−2∑

j=0

λk− j−2

n+ 1
2

N( j)
en

Δtk
n

k!
+

∞∑

k=1

N(k−1)
in

Δtk
n

k!
,

(A.29)

= nin +
nenνi

n+ 1
2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)
+ νi

n+ 1
2

∞∑

k=0

×
k∑
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λk− j

n+ 1
2
N( j)
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Δtk+2
n
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+
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Δt(k+1)
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(k + 1)!
. (A.30)

There are four different terms in the rhs The first term is the
ion density in the current time step. The second term is a closed
form analytical expression and needs no further simplification.
The fourth term also needs no further simplification. The third
term is simplified by changing the order of summation:

∞∑

j=0

N( j)
en

(Δtn) j+2 1(
λn+ 1

2
Δtn

) j+2

∞∑

k= j+2

(
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)k
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=
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N( j)
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(Δtn) j+2Q j+2
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λn+ 1

2
Δtn

)
, (A.31)

with Q j(x) defined as [37] by:

Q j(x) =
ex − E j(x)

x j
, E j(x) =

j−1∑

k=0

xk

k!
(A.32)

Then nin+1 reads:

nin+1 = nin +
nenνi

n+ 1
2

λn+ 1
2

(
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2
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+
∞∑

k=0
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. (A.33)

In order to have a 2nd order implicit ELP integration
scheme the integration scheme needs to equalize the Taylor
series up to the 2nd order terms. Assuming the following form
of the integration scheme:

nin+1 = nin +
nenνi

n+ 1
2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)

+ Δt2
n(ζNen+1 + ηNen)

+ Δtn(γiNin+1 + βiNin). (A.34)

Expanding the Nin+1 and Nen+1 in Taylor series we have:

nin+1 = nin +
nenνi

n+ 1
2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)

+ (ζ + η)N(0)
en

Δt2
n + ζ
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N(k)
en

Δtk+2
n
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+ (γi + βi)N
(0)
in

Δtn + γi

∞∑

k=1

N(k)
in

Δtk+1
n

k!
. (A.35)
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And by equating (A.35) and (A.33) up to the 2nd order term,
we have:

ζ = νi
n+ 1

2

Q3

(
λn+ 1

2
Δtn

)
, (A.36)

η = νi
n+ 1

2

(
Q2

(
λn+ 1

2
Δtn

)
− Q3

(
λn+ 1

2
Δtn

))
, (A.37)

γi =
1
2

(A.38)

βi =
1
2
. (A.39)

The integration scheme to calculate nin+1 depends on Nen+1 ,
Nen and Nin . In order to have an implicit solver, we derive a
similar expression for nin−1 and combine this expression with
the ones for nin+1 , nen+1 , and nen−1 to remove the dependency
on Nen+1 , Nen and Nin . We proceed as follow:

The Taylor series expansion of the ions density at the
previous time step, nin−1 :

nin−1 =

∞∑

k=0

n(k)
in

(−1)k Δtk
n−1

k!
, (A.40)

after following a similar derivation path as that of nin+1 , we
have:

nin−1 = nin +
nenνi

n− 1
2

λn− 1
2

(
e
−λ

n− 1
2
Δtn−1 − 1

)

+ Δt2
n−1(ζ ′Nen+1 + η′Nen )

+ Δtn−1(γ ′
iNin+1 + β′

iNin) (A.41)

where νi
n− 1

2

is the averaged ionization frequency between steps

n and n − 1, and:

ζ ′ = νi
n− 1

2

Δtn−1

Δtn
Q′

3

(
λn− 1

2
Δtn−1

)
(A.42)

η′ = νi
n− 1

2

Q′
2

(
λn− 1

2
Δtn−1

)
− ζ ′, (A.43)

γ ′
i =

Δtn−1

2Δtn
, (A.44)

β′
i = −1 − γ ′

i , (A.45)

with Q′
j defined as:

Q′
j(x) =

e−x − E′
j(x)

x j
, E′

j(x) =

j−1∑

k=0

(−1)k xk

k!
. (A.46)

We combine the approximations of nin+1 , nin−1 , nen+1 , and nen−1

to remove the explicit dependence on Nen+1 , Nen and Nin . The
expressions of nin+1 , nin−1 , nen+1 , and nen−1 are:

nin+1 = nin +
nenνi

n+ 1
2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)

+ Δt2
n(ζNen+1 + ηNen ) + Δtn(γiNin+1 + βiNin),

(A.47)

nin−1 = nin +
nenνi

n− 1
2

λn− 1
2

(
e
−λ

n− 1
2
Δtn−1 − 1

)

+ Δt2
n−1(ζ ′Nen+1 + η′Nen)

+ Δtn−1(γ ′
iNin+1 + β′

iNin), (A.48)

nen+1 = nene
λ

n+ 1
2
Δtn

+ γΔtnNen+1 + βΔtnNen (A.49)

nen−1 = nene
−λ

n− 1
2
Δtn−1

+ γ ′Δtn−1Nen+1 + β′Δtn−1Nen .

(A.50)

We multiply the above expressions with scalar coefficients,
A1, A2 and A3, chosen such that there will not be any explicit
dependence on Nin , Nen+1 and Nen in the final formulation. We
have:

Nin+1 =
[
nin+1 + A1nin−1 + A2nen+1 + A3nen−1

− (1 + A1)nin − A2nene
λ

n+ 1
2
Δtn

−
A1nenνi

n− 1
2

λn− 1
2

(
e
−λ

n− 1
2
Δtn−1 − 1

)

+
nenνi

n+ 1
2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)

− A3nene
−λ

n− 1
2
Δtn−1

]
(γiΔtn + A1γ

′
iΔtn−1)−1

(A.51)

with:

A1 = − Δtnβi

Δtn−1β′
i

, (A.52)

A2 =
−Δt2

nζ − A1Δt2
n−1ζ

′ − A3γ
′Δtn−1

γΔtn
, (A.53)

A3 =

(
−Δt2

nη − A1Δt2
n−1η

′ + β
Δt2

nζ + A1Δt2
n−1ζ

′

γ

)

×
[
Δtn−1

(
βn − γ ′

γ
β

)]−1

. (A.54)

The drift–diffusion equation for positive ions (1.2) can now
be written as:
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Nin+1 = ∇ · (Dp ∇np) + ∇ · (vair + μpEnp) − Sre−p − Srn−p ,
(A.55)

where the ionization source term has been removed from the
equation, and the unsteady term, ∂np/∂t, is approximated by
Nin+1 (A.51).

In the initial time step there is no information about the
previous time step so we have to use the first order method:

Nin+1 =

[
nin+1 + Anen+1 − nin − Anene

λ
n+ 1

2
Δtn

−
nenνi

n+ 1
2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)]
Δt−1

n , (A.56)

where,

A = −
Δtnνi

n+ 1
2

Q2

(
λn+ 1

2
Δtn

)

Q1

(
λn+ 1

2
Δtn

) . (A.57)

The implicit and explicit parts needed by Ansys Fluent are
respectively given by:

apu = −(γiΔtn + A1γ
′
iΔtn−1)−1, (A.58)

su = −
[
A1nin−1 + A2nen+1 + A3nen−1 − (1 + A1)nin

− A2nene
λ

n+ 1
2
Δtn−

A1nenνi
n− 1

2

λn− 1
2

×
(

e
−λ

n− 1
2
Δtn−1 − 1

)
+

nenνi
n+ 1

2

λn+ 1
2

(
e
λ

n+ 1
2
Δtn − 1

)

− A3nene
−λ

n− 1
2
Δtn−1

]
(γiΔtn + A1γ

′
iΔtn−1)−1.

(A.59)

Similar to electrons, the implicit ELP scheme for ions
is applied to the regions of the domain where the electric
field magnitude is strictly above the breakdown field. In the
other regions, the integration is done by a classical 2nd order
backward difference scheme.
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